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Problem Setup

Uncertainty Quantification under Distributional Shift. Suppose we have
- Training sample (X, Y )∼PX,Y

- Test sample (X, Y ) ∼ QX,Y

- PX,Y ̸= QX,Y

Given a prediction model trained under P , how can we provide uncertain quantification
for the model’s performance under Q?

Decomposing the Distributional Shift. We decompose the difference between QX,Y

and PX,Y into two sources:
- the difference between PX and QX ⇝ specified by w(x) = dQX

dPX
(x) (estimable)

- the difference between PY | X and QY | X ⇝ QY | X lies in a “neighborhood ball” of PY | X:
P(ρ; PX,Y ) :=

QX,Y s.t. (Xn+1, Yn+1) ∼ QX,Y : Df

QY | X ∥ PY | X

 ≤ ρ a.s.
.

Our Goal

Given (Xi, Yi)n
i=1 i.i.d. drawn from PX,Y , suppose QX,Y satisfies the above distribution

shift model with parameter ρ, we aim to construct a prediction interval Ĉf,ρ(Xn+1)
P(Xn+1,Yn+1)∼QX,Y

Yn+1 ∈ Ĉf,ρ(Xn+1)
 ≥ 1 − α,

for α ∈ (0, 1), with the probability over the randomness of the training and test data.

Contributions

(1) We propose the Weighted Robust Conformal Prediction (WRCP) method
⇝ approximate marginal coverage & miscoverage rate ∝ est. err. of dQX/dPX

(2) We provide a debiased variant of WRCP (D-WRCP) ⇝ double-robustness
property & miscoverage rate ∝ est. err. of dQX/dPX × est. err. of Y | X

(3) As a special example, our methodology can be adapted for sensitivity analysis of
individual treatment effects (ITEs) under the f -sensitivity model

(4) We empirically validate the methods in simulations and real data, showing their
improved efficiency over existing benchmarks

Algorithm

Intuition.
• Weight the samples to account for the shift in X

• Consider an inflated confidence level to account for the worst-case Y | X-shift

Preparations.
• Randomly split the training set into two disjoint subsets and use one subset to

determine the nonconformity score function s(·, ·)
• Compute the nonconformity scores Si = s(Xi, Yi) for i in the other subset (calibration

set)

Constructing the Prediction Interval. Recall that w(x) = dQX

dPX
(x). We construct

our prediction set as

Ĉf,ρ(x) =

y ∈ R : s(x, y) ≤ Quantile

g
−1
f,ρ(1 − α), ∑ pi(x)δSi

+ pn+1(x)δ∞




, (1)

where pi(x) = w(Xi)
∑ w(Xj) + w(x)

, and pn+1(x) = w(x)
∑ w(Xj) + w(x)

. (2)

The quantity g−1
f,ρ(1 − α) corresponds to the “inflated level” define through:

gf,ρ(β) := inf

z ∈ [0, 1] : βf


z

β

 + (1 − β)f

1 − z

1 − β

 ≤ ρ


,

and its inverse
g−1

f,ρ(τ ) := sup
β ∈ [0, 1] : gf,ρ(β) ≤ τ

.

What If w is Unknown? Suppose multiple test units (only X observed but missing
Y ).
• Using additional test units to estimate w

• Construct Ĉf,ρ(X) with w(x) replaced by ŵ(k)(x)

The debiased variant.
- Use the set-aside data to obtain an estimate m̂(x; t) of E

1{s(X, Y ) ≤ t}
∣∣∣∣∣∣∣ X = x



- Define the debiased CDF estimator

p̂(t) =
∑
i calib ŵ(Xi) ·

1{Si ≤ t} − m̂(Xi; t)


∑
i calib ŵ(k)(Xi)

+ 1
|Itest,j|

∑
i∈Itest,j

m̂(Xi; t),

where Itest,j = Itest\{j}
- We construct our prediction set as

ĈDR
f,ρ,n+j(Xn+j) = {y : s(Xn+j, y) ≤ q̂}, where q̂ = inf

t ∈ R : inf
t′≥t

p̂(t′) ≥ g−1
f,ρ(1 − α)

.

Experiments

Benchmarks. (1) CP: standard conformal prediction, (2)WCP: weighted conformal pre-
diction, and (3) RCP: robust conformal prediction.

The horizontal dashed line⇝ target coverage rate; the vertical dashed line⇝ true robust
parameter.

Simulations. Low, medium and high levels of covariate shift.

Real data.
• Left: National Study of Learning Mindsets. Predicting the potential outcome of

instilling a growth mindset in the control group.
• Right: ACS Income Dataset. Predicting whether an individual’s annual income is above

50,000 dollars, where we choose the data from New York as the training set, and that
from South Dakota as the target.

Future work

1 Investigate methods for identifying (an upper bound) of the robust parameter ρ when
we have a small amount of supervised data from the target population.

2 Extend this fine-grained approach to other distributional shift models (e.g., the
multi-group model) and improves the efficiency of the corresponding methodologies.

3 Find optimal decomposition in different settings and the corresponding treatments.

CODE: https://github.com/zhimeir/finegrained-conformal-paper.

https://github.com/zhimeir/finegrained-conformal-paper

